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1. Introduction

Cytogenetics is the branch of genetics that studies the cell activity focusing mainly on the
chromosome structure, organization and function, isolated or as the whole karyotype, in order
to understand aspects of cell biology, evolution or implicated diseases. The behavior of DNA
and genes is greatly constrained by the fact that they are incorporated into chromosomes. The
DNA is associated with proteins that control and catalyze the processes of transcription and
replication. Gene expression is controlled by modifications in histones and by chromatin
remodeling complexes. It can also be influenced by the position of the gene in the chromosome.
Hence, errors in chromosome behavior are an important cause of ill-health. The presence of
chromosomal abnormalities is usual in cancer, and specific chromosome abnormality may
often be one of the first events in the development of cancer [1]. The importance of cytogenetic
analysis in oncology is demonstrated by the number of researches made on this area since the
discovery of the Philadelphia chromosome, a 9/22 translocation, which is seen in chronic
myelogenous leukemia (CML) patients [2]. The focus of these studies is the relation between
specific chromosome alterations to prognosis, drug resistance and diagnosis for some tumors
entities. Moreover, DNA repair problems and others genomic stability pathways defects may
lead to genome-wide genetic instability, which can drive further cancer progression [3].
Although chromosome rearrangements are mainly used as markers in hematologic cancers,
these alterations have been increasingly studied in solid tumors (90% of all human malignan‐
cies), showing that chromosomal numerical/structural aberrations are common in this kind of
neoplasia.

Brain cancers are very diverse solid tumors that demonstrate a wide range of complex
karyotypes. The chromosomal features of each tumor can provide information that helps in
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clinical decisions, stratifying it in low and high risk in complementation to the grading aspects
usually considered to the central nervous system (CNS) cancers [4]. On this chapter we will
consider the implications of the presence of some chromosome mutations for specifics brain
tumors. How can these specific alterations help in risk stratification? How these aberrations
influence on the choice of treatment? What these rearranged chromosomes indicate about
recurrence, metastasis, overall survival or resistance? Obviously, chromosomal mutations
have many implications to the cell behavior, affecting the gene dosage by a deletion or
amplification, or driving the formation of chimerical transcripts because of chromosomal
translocations, etc. Each chromosomal rearrangement has an effect in gene expression or global
metabolic equilibrium of the cells. The variety of chromosomal rearrangements is great,
involving numerical and structural, and also including very specific types found mainly in
cancer, such as double minutes (DMs) and homogeneously staining regions (HSRs), which
correspond to gene amplifications (Figure 1).

The importance of chromosomal studies in brain tumors is highlighted by the fact that the
most recent World Health Organization’s (WHO) book of the CNS neoplasm classification [4]
has improved the knowledge about the tumors entities with molecular and cytogenetic
markers that, together with the histopathology features, helps in identifying, stratifying or
understanding the behavior of tumors.

Figure 1. Amplification represents one of the major molecular pathways through which the oncogenic potential of
proto-oncogenes is activated during tumorigenesis. In the example, MYCN (a MYC family gene) on 2p24.3 is showed
amplified by two different mechanisms: extra-chromosomal amplifications (double minutes – DM), and intrachromo‐
somal amplifications (Homogeneously Staining Region (HSR).
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2. Cytogenetics and cancer

The idea that chromosomal rearrangements might be causally involved in early stages of
carcinogenesis is not new. The first reports hypothesizing that karyotypic aberrations, typical
of tumor cells, may possibly be involved in the transformation of normal cells into malignant
ones was published more than a century ago by Theodor Boveri [5] in 1914. Although limited
by the poor techniques and the restricted knowledge of cell biology, those early findings
allowed him to formulate what is now known as the somatic mutation theory of cancer, which
still holds the central stage of cancer research [6]. Because cancer cells usually exhibit abnormal
karyotypes, a number of questions have emerged: are these abnormal chromosomes a cause
or a consequence of tumorigenesis? Can a single gene mutation drive the neoplastic transfor‐
mation? One assumption is correct: Some cytogenetic alterations have demonstrated that they
are directly linked to tumor formation, progression or metastases, as they are found since the
very beginning of tumorigenesis. The observation that some genes affected by chromosomal
rearrangements were involved in critical stages in cell growth, development, or survival has
focused the interest on how these rearrangements alter the function of target genes. These
studies have led to a better understanding of origin of chromosomal alterations and their role
in cancer development.

It is widely accepted that the process of tumorigenesis is initiated by an acquired muta‐
tion that  confers  a  selective advantage on a  dividing cell.  This  mutated cell  will  be  ex‐
posed  to  new  mutations  and  each  new  mutation  will  be  passible  of  a  new  round  of
Darwinian selection [7]. The cell genome is far from stable, with intrinsic errors in repli‐
cation,  checkpoint,  repair,  apoptosis,  chromosome segregation,  recombination,  etc.  Some
of these mutations can guide to chromosomal instability (CIN) and consequently to high‐
er  tendency  to  cancer  formation  [8],  a  situation  well  illustrated  in  patients  with  repair
process mutation syndromes, such as Xeroderma Pigmentosum and Fanconi anemia, which
are associated with an increased risk of cancer.

Albertson and coworkers [9] affirmed that the importance of chromosomal aberrations to
tumor development varies substantially between tumors. While there are some tumors with
marked chromosome rearrangements, others may evolve by mechanisms that result in little
chromosomal change. The difference resides on tumor initiation or the manner in which
genome instability is formed. In the same way, the ratio of chromosome rearrangement is
accompanied by the malignant stage evolution of a neoplasm, and those pre-malignant tumors
show few chromosomal aberrations, which are substantially increased on the malignant ones,
supporting a role in chromosomal aberration acquisition in tumor progression. An important
advance in the study of chromosomal rearrangements, especially aneuploidy, was the
discovery that many cancer cell lines exhibit CIN, a phenotype in which cell division is
accompanied by an abnormally high rate of chromosome loss and gain. Thus, CIN can be
considered as one form of genomic instability, along with elevated rates of mutation, errors in
DNA repair and somatic hyperrecombination [10, 11].

Many studies have also focused on the elucidation of the differential response to treatment of
cancers from the same histological classification. Because resistance for multiple drugs cannot
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be explained solely in the light of gene mutation, Duesberg and coworkers [12] developed a
theory in which they affirm that the dynamic evolution of karyotypes in cancers cells can be
responsible for resistance acquisition to most drugs utilized on treatments of cancers. This
karyotype evolution is derived by rounds of chromosome mutations facilitated by CIN,
followed by Darwinian selection which increases oncogenic functions in cells. It can explain
the rapid evolution of a tumor to gain resistance to drugs administrated on the chemotherapy
transforming itself autocatalytically. The natural selection drives the constitution of some
chromosome mutation to give a selective advantage to cell not only in growth but also in
resistance to drugs and other features of the cancer environment. It is not surprising that the
presence of chromosomal abnormalities in malignancies has been pivotal in the discovery of
targeted therapy against cancer cells, or in discriminating patients sensitive or insensitive to
traditional or new therapies [8]. Today we can say that chromosome abnormalities can be used
as markers in many different types of malignancy in the cases when it is observed that specific
rearrangements are found in tumors with a certain behavior or grade. In many different kinds
of tumors, the presence of a specific chromosomal abnormality has improved the quality of
the diagnosis, allowing a clearer definition of the prognosis and permitting the definition of
new targets on cancer therapy.

The origin and progression of cancer always were unsolved questions to majority of tumor
types. Li and coworkers [13] accompanied the chromosomal alterations in human cell lineages
for many generations after transformation by SV40 aneuploidogenics genes. They proposed a
theory in which cancer-causing karyotypes represent chromosomal equilibria between
destabilizing aneuploidy and stabilizing selection for oncogenic function. Furthermore, they
concluded that karyotypes are more likely to initiate and maintain cancers than specific gene
mutations (Figure 2). One of the great questions concerns the quasi-stable karyotype observed
in different passages of a long time cultured cell lineage or between different samples of the
same tumor type versus de CIN observed on cancer cells. The answer comes from the Dar‐
winian selection to give oncogenic function to cell, much like new species. Thus, this tumor
karyotype increases and maintains the CIN and can form nonneoplastic and nonviable
karyotypic compositions which will be eliminated (Figure 2: B, C and D); however, it can evolve
to a karyotype that provides new capability to cells such as drug-resistance or metastasis
(Figure 2: C, D and E). So, they defined two steps to cancer initiation: 1) the chromosomal
instability initiation by carcinogens that generate random aneuploidy and 2) the karyotype
Darwinian selection to give oncogenic function, that emerge from unstable randomly aneu‐
ploid karyotypes. In our opinion, Li’s theory of cancer-causing karyotypes is very concise and
is supported by different studies. Routine cancer cell culture experience demonstrates easily
that tumor samples show different karyotypic compositions, with clonal structural or numer‐
ical chromosomal abnormalities, which are examples of CIN with the so called selection for
oncogenic function. In complementation, oncogenic chromosomal compositions can be
maintained quasi-stable in distant passages of a cancer cell culture.

The recognition of the importance of cytogenetic science to cancer surveillance has accompa‐
nied the technological development of microscopy, computer image acquisition’s software
and fluorochrome applications. Although chromosome-banding is still the gold standard for

Clinical Management and Evolving Novel Therapeutic Strategies for Patients with Brain Tumors360



all routine techniques of clinical and tumor cytogenetics, the technical restrictions of this
methodology are well known. Only changes that affect the normal pattern such as size var‐
iations or position in a chromosomal band or the chromosome itself can be detected, and the
origin of additional material or gain/loss of small amounts in a structurally altered chromo‐
some often remains questionable. To overcome such limitations, fluorescence in situ hybridi‐
zation (FISH) approaches were introduced into cytogenetics. FISH is a technique based on
the probe-sample hybrid formation labeled with a detectable fluorescent dye. It is a reliable
technique that has made a revolution to chromosome mutation detection. Many other tech‐
niques have derived from FISH: Interphase FISH, chromosome region specific FISH (telo‐
mere, centromere, etc.), multicolor FISH, SKY, Multiplex-FISH, CGH, array-CGH,
microarray-CGH, FISH banding, etc. In general, these techniques are very informative and
can be utilized in complementation to those classical clinical histopathology diagnostic pro‐
cedures.

Figure 2. Li's theory of cancer-causing karyotypes. (A) Cells with CIN (gray cells) generate karyotypes with oncogenic
functions (dark gray cell). (B) Cells with oncogenic functions will develop and grow forming nonneoplastic and nonvia‐
ble cells (pink cells), which will be continually generated and eliminated (C and D). However, some karyotypes evolve
to more aggressive behavior, like metastatic or drug-resistance cells (blue cells) which can migrate to others sites (C, D
and E).

Some of these techniques, such as SKY, M-FISH or CGH-based methodologies (Figure 3), are
able to show all chromosomal alterations of a sample in a single experiment, each respecting
its limitation, of course. SKY and M-FISH (Figure 3A) can differently dye every chromosome
pair in a metaphase spread of a tumor sample, using five different fluorochromes in 24 distinct
combinations (22 autosomes, X and Y). These techniques allow the definition of the origin of
each chromosome segment involved in rearrangement, but cannot indicate microdeletions or
the gain/loss of specific loci. The CGH-based methodologies (Figure 3B) use only two different
fluorochromes, for cancer and negative control, showing all losses, gains and amplifications
in a tumor sample. These technological advances had led to an exponential increase on the
number of patients cytogenetically analyzed. After decades of cancer genome and karyotype
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analysis, is estimated that 14% (about 3000) of the human genes are involved on cancer
formation and progression [8], and the quantity of chromosome alterations involved is equally
large. Therefore, some web tools were created to permit a faster search of these genic and
chromosomal mutations on cancer for specific entities, as for example the “Mitelman Catalog
of chromosomal alterations” [14].

Figure 3. Whole-genome analysis of a tumor cell can be obtained by (A) M-FISH, SKY or (B) CGH methodologies. (A)
SKY or M-FISH utilizes a pool with 24 differently labeled chromosomes with a combination of five distinct fluoro‐
chromes to show all chromosomal rearrangements in a metaphase, including structural and numerical rearrange‐
ments and markers chromosome. (B) CGH utilizes two different DNA probes, from tumor and from a control
nonneoplastic sample, to hybridize onto a spread metaphase, or more recently in a slide array, to demonstrate DNA
loss, gain or amplification in the tumor sample.

Further down we will list some of the new and well established correlations between brain
tumors entities clinical behavior and some specific chromosome abnormalities. Some of the
imbalances were correlated with particular pathways or genic imbalances, others have no well-
established correlation with a specific gene function disturbance or cell pathways modifica‐
tions, although are systematically found in some brain tumor types.

3. Brain tumors

Brain tumors are the second most common type of cancer in children and are associated with
poor survival both in infants and adults, representing, therefore, a heavy burden for the
patients and their relatives [15]. These tumors can be devastating because they are difficult to

Clinical Management and Evolving Novel Therapeutic Strategies for Patients with Brain Tumors362



treat, and frequently cause mental impairment or death. The incidence of brain tumors has
increased during the past three decades for all age and gender groups as a result of imaging
with computed tomography (CT) and magnetic resonance imaging (MRI), lymphomas
secondary to HIV/AIDS, and changes in coding and classification [16]. With the exception of
meningiomas and pituitary adenomas, women are less likely than men to be diagnosed with
a brain tumor, particularly glioblastoma multiforme and anaplastic astrocytoma, as well as
medulloblastomas. The lifetime risk of contracting a primary malignant brain tumor is 0.52%
for women and 0.67% for men. Similarly, the chance of dying from a malignant brain tumor
is 0.40% for women and 0.49% for men. There have been growing amount of studies dedicated
to detecting chromosomal imbalances and intercellular genomic variations both in benign and
malign brain tumors. Currently, it is suggested that almost all the chromosomes are involved
in aberrations associated with brain tumorigenesis [17]. Moreover, some specifics chromosome
structures can differentiate the tumor grades, in accordance to WHO classification, simply by
determining its proliferative potential, it is the case of Nucleolar Organizer Region (NOR),
which can be analyzed by AgNOR to discriminate benign and malignant brain tumors [18].
Nevertheless, there are a number of chromosomal regions that are recurrently rearranged in
brain tumors.

In order to illustrate the importance of cytogenetic studies and the relation of some recurrent
rearrangements and tumor behavior/classification, we are going to describe the most common
chromosomal rearrangements in some brain tumors.

4. Gliomas

The most common malignant primary brain tumors are gliomas, corresponding to more than
70% of the total primary brain tumors. They include a variety of malignant grades and
histological tumor types. Gliomas can be classified in Astrocytic tumors, oligodendrogliomas
and Ependymal tumors in accordance with the WHO classification of the tumors [4]. The most
common gliomas are astrocytic tumors in which the most malignant entity is the glioblastoma
(WHO grade IV). Gliomas are characterized as non-curable tumors. Today histopathology is
still the gold standard for diagnosis and grading of gliomas tumors. However some markers
have emerged and have important applications to their classification and prognosis.

4.1. Astrocytic tumors

The Astrocytic tumors are very diverse and represent the largest and most common group of
brain tumors. The Astrocytomas, Anaplastic Astrocytomas and the secondary Glioblastomas
(GBMs) are examples of tumors that show linear progression from benign to malignant
neoplasms [4]. This progression is driven by some specific genetic events including chromo‐
somal mutations. The most common cytogenetic observation is an increased complexity of the
karyotype, both structural and numerically, concurrent with the progression in malignancy.
Amplifications of EGFR locus on 7p12 and PTEN mutations on 10q23.3 are the best known
genetic markers that distinguish the de novo GBM from GBM that has a progression from a low
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grade astrocytic tumor, which is frequently associated with TP53 and IDH1 gene mutations
[19-21]. Trisomy of 7 and monosomy of 10 as well as frequent gains of 12p, 19q, and 20q differ
primary from secondary glioblastomas [22]. Despite of these cytogenetic differences, primary
or secondary glioblastomas can be assigned to a common set of functional pathways [23].

EGFR-mediated signaling is up regulated in about 30% of malignant gliomas and 60% of GBM
[24-26]. In GBM the overexpression generally is driven by EGFR gene amplification [27, 28].
Several contradictory studies have been made in prognostic value determination of EGFR
amplification [29]. Erlotinib and gefitinib are two drugs that target the EGFR amplification/
overexpression positive patients. These drugs presented unclear results up to date, with
different researches demonstrating contradictory results. However, a recent study showed that
co-expression of PTEN and EGFRvIII (a mutant form of EGFR molecules that constitutively
activates the EGFR-phosphoinositide 3-kinase pathway) was associated with an increased
sensitivity to erlotinib, whereas tumors without PTEN expression did not respond to erlotinib
[30]. In another study, glioblastoma patients treated with these drugs did not show major
response or survival improvement [31, 32]. On the other hand, a mixed result was obtained by
the combined use of erlotinib with temozolomide and radiotherapy [33, 34]: a group with no
overall benefit that did not help to identify a subgroup of tumors that might respond to therapy
[33], and other group suggested that this regime might be useful for patients with tumors with
MGMT promoter methylation and intact PTEN [34]. There is no consensus about use of these
drugs in gliomas and glioblastomas patients to date, but new drugs and new molecularly
targeted drugs reached clinical trials [35].

A more informative scenery is obtained by the simultaneous analyses of EGFR gene amplifi‐
cation and EGFRvIII in gliomas. An estimative of 50-60% of the amplified EGFR patients
presents the EGFRvIII mutation. This condition is considered both diagnostic and prognosti‐
cally informative, indicating a high grade malignancy. It is suggested that anaplastic or low-
grade gliomas with this combination are more malignant than indicated by their
histopathology and an unfavorable impact on the prognosis has been described for these
patients [36]. To high grade gliomas, like primary glioblastomas, the EGFR amplification/
EGFRvIII poor prognosis is less obvious [37] but some studies have reported a poor prognosis
association [38-41].

In glioblastomas, EGFR amplification mostly occurs as double-minutes (DM), which are small
fragments of extra-chromosomal DNA. FISH assessment of this amplification is an accessible
technique to be made in conventional pathology laboratories, which can be made in interphasic
nuclei of a paraffin-embeded section [42, 43]. Quantitative PCR or reverse transcriptase PCR
can be used to detect EGFR amplification as well [44]. Immunohistochemistry is used, but its
value is less clear [45].

Some alterations in astrocytomas can indicate an increased risk of dying, independently of its
histological grade, such as the presence of +7q and -10q chromosomal alterations detected by
the CGH analysis of astrocytomas [46]. Misra and coworkers [47] identified three groups in
GBM patients: those with both 7 gain and 10 loss, some with 10 loss without gain of 7 and the
group without these two alterations. In clinical evaluation, the patients with 7 gain and 10 loss
showed typical characteristic of GBM short-term survivors. In contrast, patients who had none
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of these alterations showed characteristics of typical and long-term survivors. In this research
it was showed that EGFR is amplified on 7 gain 10 loss group of primary GBM. In a review
using interphase-based FISH to chromosomes 7 and 10, it was found that 75% of the astrocy‐
tomas grade II and 100% of the grade III and IV exhibited cells with polysomy of chromosome
7 and that 75% of the grades II and III or 100% of the GBM samples showed cells with loss of
chromosome 10 [20].

A gene expression profile (GEP) in a series of gliomas was associated with the cytogenetic of
the glioblastomas and with the histopathology of gliomas [48]. When low-grades versus high-
grades gliomas were compared, divergent profiles both cytogenetic and GEP were exhibited.
High grades gliomas demonstrated higher intratumoral cytogenetic heterogeneity (demon‐
strated by a higher number of cell clones). The authors correlated this with the genomic
instability or with the ancestral tumor cell clone chromosomal alterations in which karyotype
composition led to an increased CIN. According to this study, three distinct glioblastomas GEP
groups were formed: GEP1 with EGFR amplification, GEP2 with isolated trisomy 7 and GEP3
demonstrating more complex karyotype. All these three groups were formed after analysis of
ancestral tumor cell clone and further cytogenetic evolution of the tumor cells of GEP1, GEP2
and GEP3 glioblastomas were related with 7 gain, 9p and 10q deletions, suggesting a simul‐
taneous occurrence of EGFR activation (normal or mutant variants) and loss of both Ink4A/Arf
and PTEN tumor suppressor genes.

4.2. Oligodendroglial tumors

Oligodendroglial  tumors  are  diffusely  infiltrating,  well  differentiated  gliomas,  typically
located in  cerebral  hemispheres  in  adults,  composed of  neoplastic  cells  morphologically
resembling oligodendroglia [4]. In oligodendrogliomas (WHO grade II) 80-90% are corre‐
lated to  simultaneous  deletion of  1p  and 19q,  whereas  more  malignant  tumors  demon‐
strate  lower  frequencies  of  this  same  alteration.  The  anaplastic  oligodendrogliomas
(WHO grade III) present 1p/19q co-deletions in approximately 50-60%, oligoastrocytomas
in 30-50%, anaplastic oligoastrocytomas in 20-30%, and diffuse astrocytic gliomas in less
than 10%, including glioblastomas. Currently, loss of 1p and 19q is the genetic hallmark
of  oligodendroglial  tumors  [4,  49].  Theses  deletions  were  firstly  associated  with  PVC
(Procarbazine,  CCNU and vincristine)  sensitivity,  demonstrating a  favorable  outcome in
contrast with patients who don’t show these chromosomal deletions, simultaneously [50].
Nowadays,  this  substantially  improved survival  times was correlated with others  drugs
(like temozolomide) or procedures (like radiotherapy) sensitivity,  suggesting that 1p/19q
co-deletion is an indicator of tumor vulnerability to a broad range of therapeutic options
than as a specific predictor of chemosensitivity [35].

Interestingly, although the 1p and 19q regions have been extensively mapped, no tumorigenic
gene was implicated. Another observation is that 1p/19q co-deletion tumors generally present
a classical histology [51-53] and is correlated with IDH1 and IDH2 mutations [54]. On the other
hand, TP53 mutation, 10q deletions and EGFR amplifications were inversely correlated with
1p/19q co-deletion tumors [53]. Another association is obtained from tumor location: when
anaplastic oligodendrogliomas and low grade oligodendrogliomas occur in the frontal,
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parietal, and occipital lobes, they are generally related to 1p/19q co-deletions [55-57]. In
glioblastomas 1p/19q co-deletion is uncommon, however, when it is detected, the results
observed are opposite, predicting shortened survival [52]. Thus, this cytogenetic marker
denotes a clinically distinct tumor, with progression, prognosis, and treatment responses that
are different of others gliomas. Therefore detection of 1p/19q alterations in oligodendroglio‐
mas has become a useful and common test procedure [35]. FISH is the most reliable procedure
to detect this marker in the laboratories, which can be substituted by array CGH in the next
future when this technique may become less expensive.

By contrast, when the short arm of chromosome 1 is deleted alone, which is a rare cytogenetic
finding in gliomas, it is associated with a poorer prognosis. On the other hand, in glioblasto‐
mas, primary or secondary, loss of heterozygosity (LOH) of 1p (other rare observation) is
associated with longer survival [50]. In contrast, the oligodendroglial tumors are associated
with poorer outcome when 8q gains are observed [20].

4.3. Pediatric gliomas

Pilocytic astrocytomas commonly present a characteristic BRAF proto-oncogene activation at
7q34, mainly by gene fusion or duplication, which is infrequent in diffusely infiltrating
astrocytic gliomas [58-61]. Therefore, difficult diferential diagnosis between pilocytic astrocy‐
toma and low-grade diffuse astrocytoma could be improved by the detection of BRAF
activation. BRAF is target of a new therapy that inhibits the MAPK pathway, as showed in a
case report [62]. The detection of BRAF fusion can be made by specific FISH probes or by
specialized RT-PCR assays.

5. CNS Embryonal tumors

Embryonal tumors of the CNS form by far the largest group of malignant brain tumors in
childhood. They are characterized by a mass of cells that begins its growth in the embryonic
tissue in the brain. Despite the progress in the knowledge of these tumors, few studies were
translated on clinical improvement. The WHO classification divides embryonal tumors into
three entities: Medulloblastomas, CNS Primitive Neuroectodermal tumors (PNETs) and
Atypical teratoid/rhabdoid tumor (AT/RT) [4].

5.1. Medulloblastomas

Medulloblastomas (MBs) are the most frequent embryonal tumors and the most frequent CNS
tumor in childhood. They affect the cerebellum and are defined as grade IV in the WHO
classification. Histopathological classification differentiates five distinct medulloblastoma
variants: the classic MB, desmoplastic/nodular MB, MB with extensive nodularity, anaplastic
MB and large cell MB [4].

In  a  recent  comprehension  made  by  [63],  MB  comprises  four  distinct  molecular  sub‐
groups: WNT, SHH, group C and group D. This subgroup classification was made in ac‐
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cordance with its GEP of important genes in medulloblastoma disease. The authors also
created an immunohistochemistry (an easier  methodology to install  on the conventional
histopathology laboratories) four-antibody approach to discriminate the medulloblastoma
patients into the four distinct molecular variants. Children patients classified as group C
demonstrate a marked reduction in survival regardless of it  metastatic stage. After a re‐
cent discussion about the classification of MB in the light of its transcriptome, involving
researchers  of  different  laboratories  and  countries,  these  subgroup  were  renamed,  to
WNT, SHH, Group 3 and Group 4 [64].

Analyzing the somatic copy number aberrations (SCNA) of the MB, Northcott and coworkers
[65] concluded that SCNA in MB are common and are predominantly subgroup-enriched.
Only the WNT subgroup demonstrated no significant deletions and a small subset of focal
gains, which were found in a proportional frequency in non-WNT tumors, concluding that
there are no frequent, targetable SCNA on this subgroup. SHH tumors, however, exhibit
multiple focal SCNAs restricted/enriched on this group and have important clinical implica‐
tions [65]. Group 3 and Group 4, which were generically named because less is known about
its biology [64], presented important SCNAs restricted/enriched on them. MYC amplification
(Figure 4A) mutually with OTX2 oncogene demonstrated that are largely restricted to Group
3, and were extremely prognostic. Furthermore, TGF-β signaling is the unique restricted
pathway involved in group 3 tumors, which may indicating a new therapy for Group 3 patients
that present a dismal prognosis. In group 4 MB patients, the NF-kB pathway could represent
a rational therapeutic target, because NFKBIA (14q13) and USP4 (3p21.3), regulators of NF-kB,
were consistently deleted on this group [65]

The  most  frequent  chromosomal  abnormality  in  MB  is  the  isochromosome  17q  (i17q),
found in approximately 30%-50% of patients [66,  67].  The i17q structure consists of  two
centromeres,  two  very  centromeric  “17p”  region  that  are  fused  together,  mainly  in  the
Smith-Magenis region, and two copies of 17 long arm. It was observed in increased lev‐
els  of  recurrent  meduloblastomas  compared  with  the  initials  ones,  suggesting  a  role  in
progression  of  medulloblastomas  [68].  But,  although  there  are  well-known  tumor  sup‐
pressor  genes  and  oncogenes  on  chromosome  17,  the  tumor  suppressor  genes  on  the
17p  or  the  oncogenes  in  the  17q  directly  involved  on  MB disease  were  not  yet  identi‐
fied,  however  the  tumor  growth  advantage  may  occur  by  haploinsufficiency  for  genes
on 17p and an increased expression of genes on 17q driven by the copy number altera‐
tions.  For this  reason,  17q gain,  17p loss  or  both represent  the same biological  effect  of
an i17q  (Figure  4C),  which is  an  alteration commonly seen in  MB patients  [63,  68,  69].
The presence of  this  abnormality was the unique chromosomal alteration that  occurs  at
a high frequency in [63]  and was significantly prominent in Group D (Group 4)  molec‐
ular  subgroup of  MBs (65.7%).  The  others  chromosomal  alterations  were  seen at  a  low
frequency [63].  The monossomy 6 in the same study and others was detected exclusive‐
ly in WNT tumors [63, 70-73],  while the 9q loss was detected only in SHH tumors [72].
These  and others  chromosomal  markers  presents  on  the  four  molecular  subgroups  will
be shown in Table 1.
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Figure 4. Somatic Copy Number Aberrations (SCNA) in medulloblastomas involving chromosomes (A) 8, (B) 2 and (C)
17. The colors represent the inferred copy number for each chromosome locus, in which red spectrum represent
gains/amplification and blue spectrum represent loss/deletions, normal SCNA is represented in white. (A) Chromo‐
some 8 SCNA exhibiting amplification on the MYC locus on 8q24.21. (B) Chromosome 2 SCNA showing amplification
on MYCN locus on 2p24.3. (C) Chromosome 17 SCNA demonstrating 17q gain and both 17p loss and 17q gain (repre‐
senting i17q). Courtesy of Dubuc AM, Taylor MD, Northcott PA and Shih D. See [65] for details.

The investigation of MYC and MYCN locus provided consistent prognostic information to
medulloblastoma patients [66, 74-79], and can be accessed by FISH or CGH experiments
(Figure 4A and 4B), being related mutated in up to 10% of medulloblastomas. MYC amplifi‐
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cation is associated with poor prognosis and with the large cell/anaplastic medulloblastoma
variants, but histologically aggressive cases diagnosed, like large cell/anaplastic MB without
amplification of MYC, were not significantly associated with worse outcome [68]. MYCN
amplification (Figure 4B) is associated with poor prognosis and correlated with large cell/
anaplastic variants, but is clinically more heterogeneous than MYC. The MYC family was
considered in Northcott molecular stratification of MBs [63, 65], and MYC amplification on
8q24 (Figure 4A) was detected exclusively on Group C (Group 3) patients. MYCN was
demonstrated amplified (Figure 4B) both in SHH and Group D (Group 4) MB patients [63, 65].

Losses Gains Others

WNT - - Monossomy 6

SHH 9q, 10q, 14 2, 3q, 9p, 20q, 21q

Group C 5q, 8p, 10q, 11p, 16q 1q, 17q, 18 i17q,

Group D X, 8p, 8q, 11p 17q, 18 i17q,

Table 1. Significant chromosomal abnormalities observed on the four distinct molecular variants of the Northcott
study.

For adult Medulloblastomas, different genetic and cytogenetic changes were observed in
relation to pediatric ones, with profiles of chromosomal abnormalities greatly differing from
childhood. CDK6 amplification, 17q gain and 10q loss were strongly associated with shortened
survival. The WNT signaling pathway activation does not demonstrate the excellent prognosis
seen in pediatrics MB [80].

5.2. Atypical teratoid/rhabdoid tumor

Atypical teratoid/rhabdoid tumors (AT/RT) are very malignant embryonal neoplasms (WHO
grade IV) that occur in very young children [4]. Very constant alterations in SMARCB1 locus
on 22q11 were published. These alterations can be detected like deletions, loss of heterozygos‐
ity (LOH) or gene mutation in all the exons of this gene. SMARCB1 protein immunohisto‐
chemistry search has demonstrated great utility in diagnosis of AT/RT or in determinate
patients with poor therapy response and aggressive clinical course, even in the absence of AT/
RT cell [81, 82]. When combined FISH, genomic sequencing, MLPA and SNP-based oligonu‐
cleotide arrays were used to diagnosis AT/RT in 36 patients, all demonstrated biallelic
alteration in SMARCB1 locus [83]. The molecular diagnostic became yet more important when
it is possible to determinate adult carriers, to genetic counseling finalities.

5.3. Ependymoblastomas

Ependymoblastoma and ETANTR (Embryonal Tumor with Abundant Neuropil and True
Rosettes) are rare and very aggressive Primitive Neuroectodermal Tumors (PNETs) charac‐
terized by the presence of multilayred rosette [4]. They were recently associated with focal
amplification of 19q13.42 that contains a cluster of mi-RNA-coding gene. This amplification
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was seen in virtually all the embryonal brain tumor with true multilayered rosettes [84-86].
These results indicate that they may represent a single biological entity that can be diagnosed
by the detection of 19q13.42 amplification. The term Embryonal Tumor with Multilayered
Rosettes (ETMR) was proposed to designate these entities that apparently affect only children
and have a very poor prognosis.

6. Ependymal tumors

Ependymomas form a group of heterogeneous tumors anywhere along the craniospinal axis
that can occur in adult or childhood. They can originate from the radial glial cells [87, 88] which
originate the ependymal cells during normal cellular development. The WHO classification
[4] designates ependymal tumors in different histology entities, as hereafter: Subependymo‐
mas and myxopapillary ependymomas (WHO grade I); Classic ependymomas (WHO grade
II); anaplastic ependymomas (WHO grade III). The classic ependymoma was subdivided in
four variant cellular, papillary, clear cell and tanycytic [89]. For these tumors the WHO grading
was the most powerful prognostic factor in adult population. In the same way, the tumor
location has been demonstrated as having potential prognostic value, with those in the
supratentorial regions demonstrating poor prognosis and with higher risk of recurrence.

The chromosomal abnormalities reflect the heterogeneity of topology and age of Ependymo‐
mas. A study made by Korshunov and coworkers [90] has presented a comprehensive work
that subdivides the ependymomas in three groups:

a. Group 1: five years of Overall survival of 100% - tumors with gain of chromosomes 9, 15q,
or 18, or loss of chromosome 6, without 1q gain or CDKN2A deletion.

b. Group 2: five years of Overall survival of 78% - tumors balanced for chromosome 1q, 6,
9, 15q, and 18, without a homozygous deletion of CDKN2A.

c. Group 3: five years of Overall survival of 32% - tumors with 1q gain or homozygous
deletions of CDKN2A.

Group 1 demonstrates an excellent response to standard therapy protocols, demonstrating an
excellent prognosis. Group 3 demonstrates a propensity to generate metastasis and generally
show an aggressive clinical behavior, having its chromosomal composition associated with a
poor prognosis. Another possibility for this group is the association of 1q21.1-32.1 gain
correlated with an increased propensity to recurrence.

Some chromosome alterations remain unclear between the groups. The 6q23 loss in group 1
can be correlated with a decreased progression-free survival, while 6q25.3 loss in anaplastic
ependymomas has been correlated with an improved overall survival. The 9q gain in pediatric
group 1 patients was correlated with a frequent recurrence.

Yang and coworkers [91] conclude that diagnosis based only in the light of histologic proce‐
dures may be insufficient to assign an appropriate risk stratification strategy. In our opinion
the enlargement of cytogenetic analysis could generate a map of chromosomal alterations on
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ependymomas that would help in creating a personalized treatment for these tumors and
indicate targets to avoid growth, recurrence or metastasis.

7. Meningiomas

Meningiomas are the second most common tumor of the CNS in adults. They are classified as
benign, atypical or anaplastic corresponding to 80%, 15-20% and 1-3%, respectively, and
stratified in grades I, II and III, respectively [92]. Even the grade I meningiomas, with a
favorable prognosis under the classical treatment with surgical resection, radiation and
chemotherapy, presents an aggressive remaining group which needs molecular or cytogenetic
markers to distinct its diagnosis and treatment.

The karyotypes of meningiomas show diversity among the WHO grades. The WHO grade I
benign meningiomas rarely exhibit chromosomal aberrations beyond 22q losses. More
complex karyotype compositions are seen in higher grade meningiomas with more aggressive
behavior. The losses are common to 1p, 10q, 14q and less frequent on 6q and 18q in Atypical
and Anaplastic meningiomas. Higher grade meningiomas are characterized by gains on 1q,
9q, 12q, 15q, 17q and 20q. Anaplastic meningiomas have demonstrated losses on 9p with
amplification on 17q23 in a higher frequency. Alterations on chromosome 1 always represent
important alterations on CNS tumors. In meningioma losses on 1p can be related as a strong
indicator of recurrence: only 4.3% of the meningiomas with recurrence are seen with an intact
1p. The presence of deletions of 1p can be related to a strong propensity to recur. LOH on 1p,
10q and 9p are also associated with recurrence propensity. At the same way, 9p losses are
associated with anaplastic meningiomas (grade III) with p14ARF (encoding p14), CDKN2B/
p15ARF (encoding p15), and CDKN2A/p16INKa (encoding p16) tumor suppressor genes losses.
The most important is the CDKN2A impairment causing poorer outcome when compared to
patients with intact CDKN2A genes. Losses in 14q also are found in meningiomas, and are
associated with a worse prognosis. 14q deletions serve as a powerful and reliable prognostic
factor indicating tumor recurrence [93].

8. Others brain tumors

Less well understood involvement of chromosome abnormalities are reported for some
infrequent tumors of the CNS. The low frequency can explain the low number of cytogenetic
studies, but the involvement of a multigroup work to understand them could provide a
solution to compile these patients. However, some works have made a suggestive involvement
of specific chromosomal alterations in the genesis, development, aggressiveness or response
to therapies. For these, a brief description will be made here.

An example is the Olfactory Neuroblastoma (also named Esthesioneuroblastoma), that
originate from the olfactory epithelium, that form a group of neoplasm less studied at the
cytogenetic point of view, but the first comprehensive study has suggested that the prevalence
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of 3q deletion demonstrates that it can be adopted as an early genetic event in Esthesioneur‐
oblastoma and the involvement of deletion on chromosomes 5, 6q, 7q, 11p/q, 15q21 as well as
gains of 1p32-34, 1q12, and 2p22-24 can be associated with a metastatic phenotype and a worse
prognosis [94].

Rickert and coworkers [95] in a study applying CGH in choroid plexus papillomas and choroid
plexus carcinomas made the follow correlation: patients with choroid plexus carcinomas were
associated to have a significantly longer survival when +9p and -10q alterations were present.

9. Brain metastases

Brain metastases are tumors that originate outside the CNS and secondarily spread to the CNS
via the haematogenous route (metastasis) or by direct invasion from adjacent tissues [4].
Metastatic tumors form a heterogeneous group, in which primary site can be from any location
in body. But the frequencies of tumors that metastasize to brain are non-random, because there
is an organ tropism to each tumor. However, brain metastases can occur in up to 40% of the
cancer patients and represent a major cause of mortality and morbidity in cancer patients; some
authors indicate that there are under notification of brain metastases [96]. The most commons
primary sites that metastasize to brain are the lung, breast and melanoma with frequencies of
40-50%, 15-25% and 5-20%, respectively. However, melanoma will be not considered here since
the BRAF gene mutation, it the main molecular marker, can’t be detected by cytogenetic
procedures.

A consensus is that up to date the role of current chemotherapy with cytotoxic drugs is limited
to palliation, and the efficacy depends on the chemosensitivity of the primary tumor [97]. A
new possibility is to create a therapy that prevents brain metastasis; it will be possible when
targeted therapies to known molecular pathways to brain colonization become clear. This
possibility could become a common strategy to those tumors that frequently form brain
metastases.

On established brain metastases the therapy mainly consists on the use of whole brain radiation
therapy (WBRT). Less frequently targeted agents, either alone or in combination with WBRT,
have been investigated in newly diagnosed brain metastases [98].

A correlation can be made to Non-small Cell Lung Cancer (NSCLC). NSCLC patients show
activating epidermal growth factor receptor (EGFR) mutations in 10-25% of the cases, with the
highest prevalence in never-smoking women from East Asia, in up to 55%. Erlotinib and
gefitinib, EGFR tyrosine kinase inhibitors, have been demonstrated to be useful in patients
with brain metastases from NSCLC [99-106]. Nevertheless, Brain metastasis from NSCLC
patients with mutant EGFR confronted with those wild type EGFR have demonstrated an
improved overall survival, when receiving EGFR inhibitors [107]. Another molecular marker
in NSCLC patient, a FISH detectable rearrangement in 2p23 in 4% of patients, the ALK
rearrangement can be treated with crizotinib (a specific ALK inhibitor) demonstrating
objective response or stabilization of the malignancy [108]. A speculation about a brain barrier
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to crizotinib agent could permit a poorer penetration into the brain leading to a lower efficacy,
but no data about any treatment with crizotinib to brain metastasis exist to date [109].

The most informative molecular marker on brain metastases of breast cancer came from
HER2. Breast tumors positive for HER2, triple negative lacking expression of HER2, estrogen
and progesterone receptors, or the basal-like subtype form the high risk group that can
metastasize to brain. The HER2 breast cancer patients represent 25% of overall population, and
have the highest risk of brain metastases development, especially if estrogen/progesterone
negative [110]. A recent work analyzed alterations on chromosome 17 in metastatic brain
tumors from breast cancers using a dual color experiment with CEP17 and TP53 locus specific
probe. The result was a high incidence of chromosome 17p deletion in these neoplasms,
suggesting a role of 17p loss in the metastatic capability acquisition for breast tumor cells [111].

When breast cancer patients are treated with trastuzumab, a monoclonal antibody that target
HER2, 25-40% tend to present brain metastasis [112-116], which can increase when compared
with trastuzumab-no treated patients [117]. An explanation is that trastuzumab efficiently
controls the systemic disease spread [118], associated with a HER2 propensity to brain
colonization [119, 120] and with the trastuzumab decreases penetration through the blood-
brain barrier [118]. Recent works have demonstrated that a higher penetrance of trastuzumab
into the brain, which could be provided by lesion in blood-brain barrier or increased vascular
permeability driven by tumor activity or by radiation therapy, have revealed an improved
prognosis to HER2-positive patients with brain metastases [116, 121-124].

The HER2 gene, a member of EGFR gene family, is located on 17q21.1 and the amplification
can be detected by a FISH experiment. HER2 protein overexpression can be detected by an
immunohistochemistry method. Both, FISH or immunohistochemistry, can be made in
paraffin-embedded tissues. The higher cost and longer time required to cell scoring in FISH
experiments make the immunohistochemistry the most utilized procedure in laboratories, but
FISH was demonstrated as more efficient and accurate scoring systems to determine HER2
amplification than immunohistochemistry [125, 126]. More recently, a study aimed to deter‐
mine a relationship between HER2 protein expression level or HER2 gene amplification ratio
(by FISH with a HER2 gene probe and CEP17 probe in a dual color experiment) correlated
with the time to brain metastases formation in HER2+ advanced breast cancer patients. It
showed that HER2 protein expression level detection demonstrated a more sensitive method
to determinate the time to brain metastases, shown a shorter time to brain metastases in higher
level of HER2 protein expression [127].

10. Conclusions

After analyzing all these cumulative information, one can conclude that chromosomal analysis
of brain tumors can strongly improve the clinical diagnostic and prognostic in clinical practice
and the knowledge about the biology of brain tumors. This information has helped in the choice
of the best therapy in widely studied tumor types, and could help even more. Also, the great
number of chromosome abnormalities associated to specific tumor entities improves the search
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for target genes or cell pathways that direct or indirect act in tumorigenesis or tumor progres‐
sion. On the other hand, if Li’s theory [13] is true and the tumors are generated by aneuploi‐
dogenics carcinogens or mutations, targeted preventions to avoid aneuploidy/aneuploidy cells
or a methodology that enhances genomic stability/cell defense mechanisms against cells with
CIN could provide an effective approach.

Similarly, it is clear that some chromosomal alterations are more important to a wide range of
brain tumor, participating in the genesis, progression, metastases and others hallmarks of
cancer than to a specific entity. Alterations on chromosome 1, 7, 8, 10, 17 and 22 appear to be
important to a variety of tumors of the brain. 1q gain is an example of alteration that leads to
a worse prognosis, correlated with tumor recurrence or progression. At the same way, 17q
gains and 17p losses almost always represent a poor prognosis. The presence of important
tumor suppressor genes or oncogenes in these loci can explain its higher participation on the
evolution of tumors cells to achieve the malignancy. Gain of chromosome 7q could be related
with EGFR amplification, which is implicated with a large number of brain tumors entities.
Likewise 17q gain could be related to HER2 amplification, or 17p losses could be associated
with the selective advantage of TP53 pathways inactivation.

Obviously, as molecular markers, locus amplifications/deletions, structural abnormal chro‐
mosomes or aneuploidies are important genetic mutations that confer to tumors different
clinical and biological behavior. These markers can be applied in clinical routine to determine
prognostic, a better diagnostic or indicate alternative chemotherapy to brain tumor patient
treatment.

Nomenclature

AT/RT Atypical Teratoid/Rhabdoid Tumors

BRAF v-raf murine sarcoma viral oncogene homolog B1

CDK6 cyclin-dependent kinase 6

CDKN2A cyclin-dependent kinase inhibitor 2A

CDKN2A/p16INKa cyclin-dependent kinase inhibitor 2A (encoding p16)

CDKN2B/p15ARF cyclin-dependent kinase inhibitor 2B (encoding p15)

CGH Comparative Genomic Hybridization

CIN Chromosomal Instability

CML Chronic Myelogenous Leukemia

CNS Central Nervous System

DM Double-minutes

EGFR Epidermal Growth Factor Receptor

ETANTR Embryonal Tumors with Abundant Neuropil and True Rosettes
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ETMR Embryonal Tumors with Multilayered Rosettes

FISH Fluorescence in situ Hybridization

GBM Glioblastomas

GEP Gene Expression Profile

HER2 v-erb-b2 erythroblastic leukemia viral oncogene homolog 2, neuro/glioblastoma

derived oncogene homolog

HSR Homogeneously Staining Region

IDH1 isocitrate dehydrogenase 1

IDH2 isocitrate dehydrogenase 2

Ink4A/Arf cyclin-dependent kinase inhibitor 2A

LOH Loss of Heterozygosity

MB Medulloblastoma

M-FISH Multiplex-FISH

MGMT O-6-methylguanine-DNA methyltransferase

MYC v-myc myelocytomatosis viral oncogene homolog

MYCN v-myc myelocytomatosis viral related oncogene, neuroblastoma derived

NF-kB Nuclear Factor kappa B

NFKBIA nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha

NSCLC Non-small Cell Lung Cancer

OTX2 orthodenticle homeobox 2

P14ARF cyclin-dependent kinase inhibitor 2A (encoding p14)

PCR Polymerase Chain Reaction

PNET Primitive Neuroectodermal Tumors

PTEN phosphatase and tensin homolog

SCNA Somatic Copy Number Aberrations

SHH Sonic Hedgehog

SKY Spectral Karyotyping

SMARCB1 SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily

b, member 1.

TGF-β transforming growth factor, beta

TP53 tumor protein p53

USP4 ubiquitin specific peptidase 4

WBRT Whole Brain Radiation Therapy

WHO World Health Organization
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