Use este identificador para citar ou linkar para este item:
https://repositorio.ifpa.edu.br/jspui/handle/prefix/382
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.creator | TEIXEIRA, Weldon Carlos Elias | - |
dc.creator | SANZ-BOBI, Miguel Ángel | - |
dc.creator | OLIVEIRA, Roberto Célio Limão de | - |
dc.creator.Lattes | http://lattes.cnpq.br/3834202409481767 | pt_BR |
dc.creator.Lattes | http://lattes.cnpq.br/4497607460894318 | pt_BR |
dc.date.accessioned | 2022-11-17T15:33:38Z | - |
dc.date.available | 2022-11-17T15:33:38Z | - |
dc.date.issued | 2022-10-05 | - |
dc.identifier.citation | TEIXEIRA, Weldon Carlos Elias; SANZ-BOBI, Miguel Ángel; OLIVEIRA, Roberto Célio Limão de. Applying intelligent multi-agents to reduce false alarms in wind turbine monitoring systems. Energies, [S.l.], v. 15, n. 19, p. 1 – 28, 2022. Disponível em: https://repositorio.ifpa.edu.br/jspui/handle/prefix/382. Acesso em: | pt_BR |
dc.citation.volume | v. 15 | pt_BR |
dc.citation.issue | n. 19 | pt_BR |
dc.citation.spage | p. 1 | pt_BR |
dc.citation.epage | p. 28 | pt_BR |
dc.identifier.doi | https://doi.org/10.3390/ en15197317 | pt_BR |
dc.identifier.issn | 1996-1073 | pt_BR |
dc.identifier.uri | https://repositorio.ifpa.edu.br/jspui/handle/prefix/382 | - |
dc.description.abstract | This study proposes a method for improving the capability of a data-driven multi-agent system (MAS) to perform condition monitoring and fault detection in industrial processes. To mitigate the false fault-detection alarms, a co-operation strategy among software agents is proposed because it performs better than the individual agents. Few steps transform this method into a valuable procedure for improving diagnostic certainty. First, a failure mode and effects analysis are performed to select physical monitoring signals of the industrial process that allow agents to collaborate via shared signals. Next, several artificial neural network (ANN) models are generated based on the normal behavior operation conditions of various industrial subsystems equipped with monitoring sensors. Thereafter, the agents use the ANN-based expected behavior models to prevent false alarms by continuously monitoring the measurement samples of physical signals that deviate from normal behavior. Finally, this method is applied to a wind turbine. The system and tests use actual data from a wind farm in Spain. The results show that the collaboration among agents facilitates the effective detection of faults and can significantly reduce false alarms, indicating a notable advancement in the industrial maintenance and monitoring strategy. | en |
dc.description.provenance | Submitted by Junior Almeida (junior.almeida@ifpa.edu.br) on 2022-11-17T15:29:08Z No. of bitstreams: 2 Artigo_ApplyingIntelligentMulti-Agents.pdf: 5954460 bytes, checksum: b3363aae7c4ba3e008d62f874313ee7f (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) | en |
dc.description.provenance | Approved for entry into archive by Junior Almeida (junior.almeida@ifpa.edu.br) on 2022-11-17T15:33:38Z (GMT) No. of bitstreams: 2 Artigo_ApplyingIntelligentMulti-Agents.pdf: 5954460 bytes, checksum: b3363aae7c4ba3e008d62f874313ee7f (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) | en |
dc.description.provenance | Made available in DSpace on 2022-11-17T15:33:38Z (GMT). No. of bitstreams: 2 Artigo_ApplyingIntelligentMulti-Agents.pdf: 5954460 bytes, checksum: b3363aae7c4ba3e008d62f874313ee7f (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2022-10-05 | en |
dc.language | eng | pt_BR |
dc.publisher | Multidisciplinar Digital Publishing Institute | en |
dc.publisher.country | Suica | pt_BR |
dc.publisher.initials | MDPI | pt_BR |
dc.relation.ispartof | Energies | pt_BR |
dc.rights | Acesso aberto | pt_BR |
dc.source.uri | https://www.mdpi.com/1996-1073/15/19/7317 | pt_BR |
dc.subject | Multi-agent systems (MAS) | pt_BR |
dc.subject | Artificial neural networks (ANN) | pt_BR |
dc.subject | False alarm problem | pt_BR |
dc.subject | Condition monitoring | pt_BR |
dc.subject | Wind turbine | pt_BR |
dc.subject.cnpq | CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA | pt_BR |
dc.title | Applying intelligent multi-agents to reduce false alarms in wind turbine monitoring systems | en |
dc.type | Artigo de Periódico | pt_BR |
dc.creator.ORCID | https://orcid.org/0000-0001-7212-6399 | pt_BR |
dc.creator.ORCID | https://orcid.org/0000-0001-5192-8587 | pt_BR |
dc.creator.ORCID | https://orcid.org/0000-0002-6640-3182 | pt_BR |
dc.description.affiliation | Instituto Federal de Educação, Ciência e Tecnologia do Pará | pt_BR |
dc.description.affiliation | Universidad Pontificia Comillas Escuela Técnica Superior de Ingeniería | en |
dc.description.affiliation | Universidade Federal do Pará | pt_BR |
Aparece nas coleções: | Artigos publicados - Marabá Industrial |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
Artigo_ApplyingIntelligentMulti-Agents.pdf | 5,81 MB | Adobe PDF | Visualizar/Abrir |
Este item está licenciada sob uma Licença Creative Commons