Use este identificador para citar ou linkar para este item: https://repositorio.ifpa.edu.br/jspui/handle/prefix/382
Registro completo de metadados
Campo DCValorIdioma
dc.creatorTEIXEIRA, Weldon Carlos Elias-
dc.creatorSANZ-BOBI, Miguel Ángel-
dc.creatorOLIVEIRA, Roberto Célio Limão de-
dc.creator.Latteshttp://lattes.cnpq.br/3834202409481767pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/4497607460894318pt_BR
dc.date.accessioned2022-11-17T15:33:38Z-
dc.date.available2022-11-17T15:33:38Z-
dc.date.issued2022-10-05-
dc.identifier.citationTEIXEIRA, Weldon Carlos Elias; SANZ-BOBI, Miguel Ángel; OLIVEIRA, Roberto Célio Limão de. Applying intelligent multi-agents to reduce false alarms in wind turbine monitoring systems. Energies, [S.l.], v. 15, n. 19, p. 1 – 28, 2022. Disponível em: https://repositorio.ifpa.edu.br/jspui/handle/prefix/382. Acesso em:pt_BR
dc.citation.volumev. 15pt_BR
dc.citation.issuen. 19pt_BR
dc.citation.spagep. 1pt_BR
dc.citation.epagep. 28pt_BR
dc.identifier.doihttps://doi.org/10.3390/ en15197317pt_BR
dc.identifier.issn1996-1073pt_BR
dc.identifier.urihttps://repositorio.ifpa.edu.br/jspui/handle/prefix/382-
dc.description.abstractThis study proposes a method for improving the capability of a data-driven multi-agent system (MAS) to perform condition monitoring and fault detection in industrial processes. To mitigate the false fault-detection alarms, a co-operation strategy among software agents is proposed because it performs better than the individual agents. Few steps transform this method into a valuable procedure for improving diagnostic certainty. First, a failure mode and effects analysis are performed to select physical monitoring signals of the industrial process that allow agents to collaborate via shared signals. Next, several artificial neural network (ANN) models are generated based on the normal behavior operation conditions of various industrial subsystems equipped with monitoring sensors. Thereafter, the agents use the ANN-based expected behavior models to prevent false alarms by continuously monitoring the measurement samples of physical signals that deviate from normal behavior. Finally, this method is applied to a wind turbine. The system and tests use actual data from a wind farm in Spain. The results show that the collaboration among agents facilitates the effective detection of faults and can significantly reduce false alarms, indicating a notable advancement in the industrial maintenance and monitoring strategy.en
dc.description.provenanceSubmitted by Junior Almeida (junior.almeida@ifpa.edu.br) on 2022-11-17T15:29:08Z No. of bitstreams: 2 Artigo_ApplyingIntelligentMulti-Agents.pdf: 5954460 bytes, checksum: b3363aae7c4ba3e008d62f874313ee7f (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)en
dc.description.provenanceApproved for entry into archive by Junior Almeida (junior.almeida@ifpa.edu.br) on 2022-11-17T15:33:38Z (GMT) No. of bitstreams: 2 Artigo_ApplyingIntelligentMulti-Agents.pdf: 5954460 bytes, checksum: b3363aae7c4ba3e008d62f874313ee7f (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)en
dc.description.provenanceMade available in DSpace on 2022-11-17T15:33:38Z (GMT). No. of bitstreams: 2 Artigo_ApplyingIntelligentMulti-Agents.pdf: 5954460 bytes, checksum: b3363aae7c4ba3e008d62f874313ee7f (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2022-10-05en
dc.languageengpt_BR
dc.publisherMultidisciplinar Digital Publishing Instituteen
dc.publisher.countrySuicapt_BR
dc.publisher.initialsMDPIpt_BR
dc.relation.ispartofEnergiespt_BR
dc.rightsAcesso abertopt_BR
dc.source.urihttps://www.mdpi.com/1996-1073/15/19/7317pt_BR
dc.subjectMulti-agent systems (MAS)pt_BR
dc.subjectArtificial neural networks (ANN)pt_BR
dc.subjectFalse alarm problempt_BR
dc.subjectCondition monitoringpt_BR
dc.subjectWind turbinept_BR
dc.subject.cnpqCNPQ::ENGENHARIAS::ENGENHARIA ELETRICApt_BR
dc.titleApplying intelligent multi-agents to reduce false alarms in wind turbine monitoring systemsen
dc.typeArtigo de Periódicopt_BR
dc.creator.ORCIDhttps://orcid.org/0000-0001-7212-6399pt_BR
dc.creator.ORCIDhttps://orcid.org/0000-0001-5192-8587pt_BR
dc.creator.ORCIDhttps://orcid.org/0000-0002-6640-3182pt_BR
dc.description.affiliationInstituto Federal de Educação, Ciência e Tecnologia do Parápt_BR
dc.description.affiliationUniversidad Pontificia Comillas Escuela Técnica Superior de Ingenieríaen
dc.description.affiliationUniversidade Federal do Parápt_BR
Aparece nas coleções:Artigos publicados - Marabá Industrial

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Artigo_ApplyingIntelligentMulti-Agents.pdf5,81 MBAdobe PDFVisualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons